Theory of Anisotropic Elasticity

Recall the linear anisotropic constitutive law

\[\sigma_{ij} = C_{ijkl} e_{kl} \]

\[C_{ijkl} = C_{jikl} = C_{ijlk} = C_{klij} \]

\[e_{kl} = \frac{1}{2} (u_{k,l} + u_{l,k}) \]

due to symmetry in elastic modulus, \(C_{ijkl} \)

\[\sigma_{ij} = C_{ijkl} u_{k,l} \]

Consider 2D deformation where \(u_i \) (i=1,2,3) depends only on \(x_1 \) and \(x_2 \)

Without loss of generality, let

\[u_i = a_i \cdot f(z) \]

\[z = x_1 + px_2 \]

\(f(z) \) arbitrary function

\(a_i \) and \(p \) are unknowns dependent on material anisotropy and boundary conditions

Since displacements are defined, compatibility is automatically satisfied - equilibrium must be satisfied also

\[\sigma_{ij} = 0 \]

\[C_{ijkl} u_{k,l} = 0 \]

Valid for homogeneous materials
differentiate: \(u_k = \alpha_k f(z) \)

\[
u_{ks} = (\delta_{si} + \rho \delta_{s2}) \alpha_k f'(z)
\]

\(\delta_{si} \) - Kronecker delta

\(f'(z) = \frac{df}{dz} \)

now,

\[
C_{ijs} u_{ks} = 0
\]

\[
C_{ijs} (\delta_{si} + \rho \delta_{s2}) (\delta_{s1} + \rho \delta_{s2}) \alpha_k = 0
\]

\[
(C_{iiks} + \rho C_{iiks}) (\delta_{s1} + \rho \delta_{s2}) \alpha_k = 0
\]

\[
[C_{iik1} + \rho (C_{iik2} + C_{iik1}) + \rho^2 (C_{iik2})] \alpha_k = 0
\]

matrix notation

\[
(\begin{bmatrix} \delta & \rho \end{bmatrix}^T \begin{bmatrix} \rho & \rho^2 \end{bmatrix}) D_{\eta} = 0
\]

one solution to this problem is \(\delta \alpha = 0 \)

This is trivial.

Nontrivial solution requires

\[
\begin{bmatrix} \delta & \rho \end{bmatrix}^T \begin{bmatrix} \rho & \rho^2 \end{bmatrix} = 0
\]

gives six roots for \(\rho \) - eigenvalues

associated eigenvectors are \(\alpha_k \)
determine stress and displacement solutions

\[\sigma_{ij} = C_{ijkl} \delta_{lkm}^{(k)} \]

\[\sigma_{ij} = C_{ijkl} (\delta_{S1} + \rho \delta_{S2}) \alpha_k f'(z) \]

\[\sigma_{ij} = (C_{ijkl} + \rho C_{ikjl}) \alpha_k f'(z) \]

\[\sigma_{ii} = (C_{ikli} + \rho C_{ikl}) \alpha_i f'(z) = (\tau_{ik} + \rho \tau_{ik}) \alpha_i f'(z) \]

\[\sigma_{zz} = (C_{izk} + \rho C_{izk}) \alpha_z f'(z) = (\tau_{zk} + \rho \tau_{ik}) \alpha_z f'(z) \]

\[\lambda \text{ The eigenvalues must be imaginary } \rho_\alpha = \rho_\alpha \text{ and } \rho_\alpha = \rho_\alpha \text{. } \]

\[i = \sqrt{-1} \]

\[\lambda \text{ this is required for the strain energy to be positive definite. } \]

since \(\alpha \) is real, we take

\[\nu = \frac{1}{2} \sum_{\alpha=1}^{3} \left(\alpha \alpha f'(z_\alpha) + \overline{\alpha} \alpha f'(\overline{z}_\alpha) \right) \]

\[\text{Im } \rho_{\alpha} > 0 \]

\[\rho_{\alpha 3} = \overline{\rho}_{\alpha} \quad \text{complex conjugate} \]

\[\alpha_{\alpha 3} = \overline{\alpha}_{\alpha} \]

\[z_{\alpha} = X_\alpha + \rho_{\alpha} \overline{z}_2 \]
Similarly stress can be defined using the previous equations for \(\sigma_{i1} \) and \(\sigma_{i2} \):

Recall \(t_i = \sigma_i n_i \):

\[
\begin{align*}
t_1 &= \sigma_{i1} n_1 + \sigma_{i2} n_2 + \sigma_{i3} n_3 \\
t_2 &= \sigma_{i2} n_1 + \sigma_{i3} n_2 + \sigma_{i3} n_3
\end{align*}
\]

The vector components of stress can be written as

\[
\begin{align*}
(\mathbf{t}_1)_i &= \sigma_{i1} \\
(\mathbf{t}_2)_i &= \sigma_{i2}
\end{align*}
\]

Such that now,

\[
\begin{align*}
\tilde{t}_1 &= \frac{3}{\alpha_{i1}} \sum \left(\mathbf{a} \cdot \mathbf{b} \right) a_i f_a^l(\bar{z}_a) + \left(\mathbf{a} \cdot \mathbf{b} \right) a_i f_a^l(\bar{z}_a) \\
\tilde{t}_2 &= \frac{3}{\alpha_{i2}} \sum \left(\mathbf{a} \cdot \mathbf{b} \right) a_i f_a^l(\bar{z}_a) + \left(\mathbf{a} \cdot \mathbf{b} \right) a_i f_a^l(\bar{z}_a)
\end{align*}
\]

This can be simplified or rewritten in condensed notation as

\[
\begin{align*}
\sigma_{i1} &= -\mathbf{b}_i f'(\bar{z}) \\
\sigma_{i2} &= \mathbf{b}_i f'(\bar{z})
\end{align*}
\]

Where, \(\mathbf{b} = \left(\mathbf{R}_z + \rho \mathbf{T}_z \right) \mathbf{a} = -\frac{1}{\rho} \left(\mathbf{Q} + \rho \mathbf{R} \right) \mathbf{a} \)

Introducing the stress function, \(\psi_i = \mathbf{b}_i f(\bar{z}) \)

\[
\begin{align*}
\sigma_{i1} &= -\psi_{i,2} \\
\sigma_{i2} &= \psi_{i,1}
\end{align*}
\]
the general displacement and stress potential relations are now,

\[u = \sum_{\alpha=1}^{3} a_\alpha f_\alpha(\bar{z}_\alpha) + \bar{a}_\alpha f_{\alpha+3}(\bar{z}_\alpha)^3 \]

\[\phi = \sum_{\alpha=1}^{3} b_\alpha f_\alpha(\bar{z}_\alpha) + \bar{b}_\alpha f_{\alpha+3}(\bar{z}_\alpha)^3 \]

and \(b_{\alpha+3} = \bar{b}_\alpha \)

This is the sextic formalism due to Stroh and \(a_\alpha \) and \(b_\alpha \) are the Stroh eigenvectors. The only stress component missing is \(\sigma_{33} \). It is determined in terms of other stress components for the plane strain condition, \(\varepsilon_{33} = 0 \).

How do you obtain the plane \(\sigma \) case?

Application to boundary value problems

Most applications (excluding bimaterials) \(f_\alpha \) has the same functional form. We can then write,

\[f_\alpha(\bar{z}_\alpha) = f(\bar{z}_\alpha)g_\alpha \]

\[f_{\alpha+3}(\bar{z}_\alpha) = f(\bar{z}_\alpha)\bar{g}_\alpha \]

\(g_\alpha \) are arbitrary complex constants that must satisfy boundary conditions.

The equation above can now be written as

\[u = 2\text{Re} \left\{ A \right\langle f(\bar{z}_\alpha) \rangle g_\alpha \}

\[\phi = 2\text{Re} \left\{ B \right\langle f(\bar{z}_\alpha) \rangle \bar{g}_\alpha \}

\[\bar{\phi} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \quad \bar{B} = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} \]

\[\langle f(\bar{z}_\alpha) \rangle = \text{diag}[f(\bar{z}_1), f(\bar{z}_2), f(\bar{z}_3)] \]
Example

Anti-plane deformation

\[\sigma_{ij} = C_{ijkl} \varepsilon_{kl} \]
\[\sigma_{ij} = 0 \]
\[\varepsilon = \frac{1}{2} (U_{ij} + U_{ji}) \]
\[\sigma_{ij} = C_{ijkl} U_{kj}, s_j = 0 \] must satisfy this equation subject to some set of boundary conditions

For the anti-plane problem, consider special anisotropic materials which satisfy

\[C_{ij} = C_{55} = C_{24} = C_{25} = C_{16} = C_{36} = 0 \] (Voigt notation)

Monoclinic materials with symmetry along \(x_3 \) satisfy this fairly general

For anti-plane deformation

\[U_1 = U_2 = 0 \]
\[U_3 = U(x_1, x_2) \]

\[\sigma_{ij} = C_{ijkl} U_{ij} + C_{ijkl} U_{i2} \]
\[\sigma_{31} = C_{55} U_{11} + C_{45} U_{22} \]
\[\sigma_{32} = C_{45} U_{11} + C_{44} U_{22} \]
\[\sigma_{33} = C_{35} U_{11} + C_{34} U_{22} \]

equilibrium requires, \(\sigma_{31} + \sigma_{32} = 0 \)

\[C_{55} U_{11} + 2C_{45} U_{12} + C_{44} U_{22} = 0 \] homogeneous second order differential equation for \(U \)
The stresses are:

\[\sigma_{xx} = \frac{1}{A_{12}} \left(-\sigma_{zz} \right) \]

\[\sigma_{yy} = \frac{1}{A_{12}} \left(-\sigma_{zz} \right) \]

\[\sigma_{zz} = \frac{1}{A_{12}} \left(-\sigma_{zz} \right) \]

and \(\lambda \) is the shear modulus. (This also holds for plane deformation.)

If the material is isotropic, \(G = G = G \), \(G \) is 0.

\[\sigma_{xx} = \frac{1}{A_{12}} \left(-\sigma_{zz} \right) \]

\[\sigma_{yy} = \frac{1}{A_{12}} \left(-\sigma_{zz} \right) \]

\[\sigma_{zz} = \frac{1}{A_{12}} \left(-\sigma_{zz} \right) \]

Substitute \(\sigma_{zz} \) into 2nd order ODE for properties of \(\lambda \).

\(\lambda = \sqrt{G} \) and \(\rho \) must be determined.

\(\lambda = \sqrt{G} - \sqrt{G} > 0 \) to satisfy positive definite.