next up previous


ECH5842 CHEMICAL ENGINEERING ANALYSIS R.Chella

HOMEWORK # 4 Fall'97



1(a) . Show that a ``separation of variables'' approach to the unsteady-state, one-dimensional heat conduction equation:

\begin{displaymath}
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \qquad \
 0 \leq x \leq l \end{displaymath}

with initial conditions:

u(t=0,x) = u0(x)

and boundary conditions:

\begin{displaymath}
u(t,0) = 0, \qquad \cos (\beta)u(t,l) + \
\sin(\beta)\frac{\partial u(t,l)}{\partial x} = 0 \end{displaymath}

leads to the eigenvalue problem[$u(x,t) = \phi(x)\tau(t)$]:

\begin{displaymath}
\phi'' + \lambda\phi = 0 \qquad \
\hbox{[$'$ denotes differentiation with respect to x]}\end{displaymath}

\begin{displaymath}
\phi(0) = 0, \qquad \cos(\beta)\phi(l) + \sin(\beta)\phi'(l) = 0 \end{displaymath}

(b) Discuss the various physical situations corresponding to values of $\beta$ between 0 and $\pi/2$ (e.g. $\beta=0$ corresponds to the relative temperature at the end of the rod at x=l being fixed at zero).

(c) Solve for the eigenvalues and eigenvectors of $\phi$ for $\lambda \geq 0$.



2. Solve by separation of variables:

\begin{displaymath}
u_{t} - u_{xx} = x \sin t, \qquad 0 \leq x \leq 1 , t \geq 0 \end{displaymath}

u(x,0) = x(1-x)

\begin{displaymath}
u(0,t) = u_{x}(1,t) = 0 \qquad t \gt 0\end{displaymath}

to show that:

\begin{displaymath}
u(x,t) = \sum_{n=0}^{\infty}A_{n}(t) \sin \lambda_n \, x \end{displaymath}

\begin{displaymath}
A_{n}(t) = A_{n}(0)e^{-\lambda_{n}^{2}t} + \frac{b_{n}}{\lambda_n^4 + 1}\end{displaymath}

\begin{displaymath}
A_n(0) = \frac{32 - 4\pi^2(2n+1)^2}{\pi^3(2n+1)^3}\end{displaymath}



3. Show using the separation of variables technique, that the solution to:
\begin{align*}
u_t &= \kappa u_{xx}\qquad 0 < x < l \quad t\gt 0 \ \ u(x,0) &=...
 ... < x < l \ \ u(0,t) = f_0(t) &\quad u(l,t) = f_1(t) \qquad t \gt 0\end{align*}
with f0(0) = f1(0) = 0, is:
\begin{align*}
u(x,t) &=\left( 1 - \frac{x}{l} \right) f_0(t) + \frac{x}{l} f_1(...
 ... x/l)
\ c_n(t) &= \frac{2}{n \pi} [(\cos n \pi) f_1'(t) - f_0'(t) ]\end{align*}

4. Solve problem 3 using Laplace transforms instead, to show:

\begin{displaymath}
u(x,t) = \int_0^t M_x(x,t-\tau) f_0(\tau) \, d\tau +
 \int_0^t M_x(l-x,t-\tau) f_1(\tau) \, d\tau \end{displaymath}

\begin{displaymath}
M(x,t) = - \sqrt{\frac{\kappa}{\pi t}} \sum_{n= -\infty}^{n= \infty} \
 e^{-(2nl -x)^2/4\kappa t}\end{displaymath}

Comparing the solutions obtained in problems 3 and 4, which one would converge more rapidly for small values of t, and which one for large values of t.





Note:

\begin{displaymath}
{\cal{L}}^{-1} \left\{ \frac{\sinh a \sqrt{s}}{\sinh b \sqrt...
 ...fty} \frac{(2n+1)b +a}{\sqrt{4\pi t^3}} \
e^{-[(2n+1)b+a]^2/4t}\end{displaymath}



Ravindran Chella
10/23/1997