Towards a More General Model of Reversible Logic Hardware

Invited talk presented Mar. 16th, 2012 at the Superconducting Electronics Approaching the Landauer Limit and Reversibility (SEALeR) workshop

Michael P. Frank
Dept. of Elec. & Comp. Eng., FAMU-FSU College of Engineering & Dept. of Physics, Florida A&M University
A Simple Question

What is the simplest & most general universal set of primitive digital elements for implementing (adiabatic) reversible computing in CMOS?

A1: Fredkin gates (cSWAP)?
 * Restricted to conservative logic (or dual-rail)

A2: Toffoli gates (ccNOT)?
 * Still has six I/O terminals (3 input/3 output)

A3: cNOT?
 * Simpler, but not universal w/o also quantum gates

Also, all the above elements consume all of their inputs, & emit an equal number of outputs each time they are applied…

Is that truly the most general framework?

A4: CMOS (nFET & pFET) transistors!
 * Instances of a more general class of elements for reversible computing.

3/16/2012
Transistors as Reversible Elements

• A (field-effect) transistor has 3 terminals only:
 – 1 input-only terminal (gate)
 • This input affects (but is not consumed by) the device
 – 2 bidirectional terminals (source/drain)
 • Generally these can act as inputs, or outputs, or both!
 – Actually, there is also a 4th (body) terminal
 • But we can ignore it for our present purposes

• Obviously, the operation of a transistor is not always reversible…
 – But, we’ll see, it can be conditionally reversible
 • Under certain preconditions that we can define.
 – & this is sufficient for building any (classical) reversible digital computational functionality that we can imagine!
High-Impedance (Z) States

• In general, a given physical I/O terminal between devices does not need to always be supplying a bias from one side to the other.
 – Another option: The terminal can be configured (on either, or both sides) as an open circuit.
 • No voltage sourced / no current sunk

• ‘Z’ states are frequently used in digital design!
 – Bidirectional I/O ports
 – Shared buses
 – Dynamic logic families, dynamic RAM
FET Potential Energy Surface

• A FET provides a controllable potential energy surface for charge carriers, very similar to Landauer’s bistable potential well model.

 – For an n-type FET:
 • Raise gate voltage → lower potential energy barrier for electrons to pass between source and drain terminals.
 – In pFET: effect is opposite, and for holes

 – Apply bias voltage between source & drain terminals to “tilt” the potential energy surface

• Off transistor = open circuit
 – High-Z terminal (as seen from either side)
Possible Well Transitions

• Catalog of all the possible transitions in the bistable wells, adiabatic & not...
 – We can characterize a wide variety of digital logic and memory styles in terms of how their operation corresponds to subgraphs of this diagram.

(Ignoring superposition states.)

Barrier Height

Direction of Bias Force

leak

1

0

0

N

0

1

k \ln 2

\Delta E

\Delta E

\Delta E
Erasing Digital Entropy

• Note that if the information in a bit-system is already entropy,
 – Then erasing it just moves this entropy to the surroundings.
 – This can be done with a thermodynamically reversible process, and does not necessarily increase total entropy!

• However, if/when we take a bit that is known, and irrevocably commit ourselves to thereafter treating it as if it were unknown,
 – that is the true irreversible step,
 – and that is when the entropy is effectively generated!!

In these 3 states, there is no entropy in the digital state; it has all been pushed out into the environment.

Note: This transformation is reversible!!
Logic & Memory Styles

All describable within the potential-well paradigm!

• Irreversible styles:
 – Input-barrier, constant-bias logic.
 • E.g. standard static CMOS inverters & combinational gates.
 – Input-bias, clocked-barrier latching.
 • Standard static CMOS latches, dynamic RAM cells, etc.

• Reversible styles:
 – **Type 1**: Input-bias, clocked-barrier latching.
 – **Type 2**: Input-barrier, clocked-bias logic.
 – **Type 3**: Input-barrier, clocked-bias latching logic.

• All of these are available in a very wide variety of different physical instantiations of the bistable well.
 – E.g., CMOS, superconducting, quantum-dot, Y-branch switches, mechanical implementations, etc.
Rules for (Asymptotically) Reversible Operation of a FET

• **Rule 1:** Never turn *on* a transistor when there is a (non-negligible) *voltage* between source & drain terminals.
 – Leads to sudden order-CV^2 losses.

• **Rule 2:** (Obviously) never apply different biases simultaneously to source & drain of an “on” transistor.
 – Causes a (dissipative) short-circuit current across the device.

• **Rule 3:** Never change the voltage applied to any given terminal too rapidly (relative to RC of signal path)...
 – Especially to the source or drain of an “on” transistor!
 • Keeps the V_{DS} voltage drop (and the Q^2R/t losses) small

• **Rule 4:** Never turn *off* a transistor when there is a (non-negligible) *current* between source & drain terminals.
 – Exception: If there’s an alternate path between the same nodes!
 – Several early “adiabatic” logic families unwittingly failed to obey this rule \rightarrow not truly/fully adiabatic!
Finding Safe Adiabatic Transitions

- Given a set of logic levels,
 - And linear ramps between them,
- We can determine which combinations of gate/source/drain transitions are adiabatic.
 - Made easier because level-crossings can only occur at certain discrete times.
- A discrete circuit simulator was developed at UF that checks arbitrary 3-level circuits for full adiabaticity.
Possible Linear Transitions in a Semi-Tick for Three-Level Logic at an n-FET with $V_{th} \approx (V_{dd} - V_{ss})/8$
Examples of Adiabatic Transitions: Example #1

(Always adiabatic – Source & drain remain connected throughout transition)
Examples of Adiabatic Transitions: Example #2

(Always adiabatic – Source & drain become disconnected, but only while $I_{DS} = 0$)
Examples of Adiabatic Transitions: Example #3

(Possibly adiabatic – But only if source & drain are *separately* being driven along identical trajectories)
Examples of Adiabatic Transitions: Example #3

(Always adiabatic – Source & drain disconnected throughout transition)
Examples of Non-Adiabatic Transitions: Example #1

(Never adiabatic – Transistor turns on when $V_{DS} \neq 0$)
Reversible Set (rSET) & Clear (rCLR)

- **rSET** operation semantics: **Given assurance** that a bit is initially 0, unconditionally change it to 1.
 - To implement: Traverse the adiabat (reversible trajectory) shown below.
- Reverse this path to perform **rCLR**.
Taking \(r\text{SET}/r\text{CLR} \) out of context

- What happens if we attempt to perform \(r\text{SET} \) on a bit that is already a 1?
 - It still ends up with the right value (1), but…
 - Irreversible dissipation occurs in step 2 (when barrier is lowered), as shown below.

- Similarly if we try to \(r\text{CLR} \) a 0.

![Diagram](image-url)
rSET/rCLR transition tables

- Note that these tables are *not* logically reversible (invertible) according to the strict traditional definition…
 - Since they don’t represent a one-to-one transformation of *all* possible initial states. (Some final states have >1 predecessor.)
- *However*, if we restrict our use of these operations so as to always *avoid* the input states that actually result in dissipation,
 - *Then*, we obtain a one-to-one transformation of *the subset of the possible initial states that are actually used* in the design,
 - And *that* is the correct statement of the minimum logical requirement for avoiding Landauer’s limit!

<table>
<thead>
<tr>
<th>Before rSET</th>
<th>After rSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Before rCLR</th>
<th>After rCLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Here is a suggested graphical notation for rSET/rCLR in the spacetime diagram picture.

However, keep in mind that the spacetime diagram formalism omits representation of the control signal that determines exactly *when* the operation occurs.
Type 1: Input-Bias Clocked-Barrier Reversible Latching (& Logic)

• Cycle of operation:
 – (1) Data input applies bias
 • Add forces to do majority logic
 – (2) Clock signal raises barrier
 – (3) Data input bias removed
 (Can amplify/restore input signal in the barrier-raising step.)

Can reset latch reversibly (4) given copy of contents.

Examples: Adiabatic QCA, SCRL latch, Rod logic latch, PQ logic, Buckled logic, Helical logic
1-transistor Adiabatic rSET/rCLR/latch/DRAM cell

Voltage color scheme: **Low** / **Medium** / **High**

Can similarly use a CMOS transmission gate (nFET/pFET pair) to latch a full-swing signal if necessary.

(1) Apply input bias
(2) Raise barrier
(3) Remove input bias

(Reverse steps to reversibly unlatch M)
A Simple Reversible CMOS Latch

- Uses a single standard CMOS transmission gate (T-gate).
- Sequence of operation:
 1. (0) input level initially tied to latch ‘contents’ (output);
 2. (1) input changes gradually → output follows closely;
 3. (2) latch closes, charge is stored dynamically (node floats);
 4. (3) afterwards, the input signal can be removed.

Later, we can reversibly “unlatch” the data with an exactly time-reversed sequence of steps.
Reversible latch in spacetime diagram

I may be restored to neutral again later without necessarily affecting value of M

Outside influence causes I to possibly change here

Arrow to dotted line denotes that change to I is reversibly carried through (without gain) to location M at this time (energy transferred into I is also fanned out to M)

Barrier is raised some time afterwards (end of shaded area)

Dotted lines denote that these nodes contain no information at these times (they are in a predetermined state)

Unlatching sequence:

Note this operation is adiabatic only if I and M match up exactly when they are first connected together!
Icon for Latch

- Extremely simple notation:
 - Just draw a short orthogonal line across the wire to indicate the presence of a latch at that point.
 - Control of latch timing is implicit.

- Note the same latch hardware can actually be used to latch signals being passed in either direction. → It’s symmetric in space and time.
Suppose the signal on the input node I was produced as a temporary copy of some origin node O. We will see how to implement this reversibly later.

Then for simplicity of our diagrams, we may wish to omit explicit representation of the intermediate node I. However, we must keep in mind that there is then a small additional space usage not explicitly shown in the diagram.
Operation Naming Conventions

• Clarification of our naming conventions for operations:

r – “reversible”
 • Means operation is a conditionally-reversible variant of an operation that would traditionally have been irreversible.

l – “latching”
 • Operation includes latching of result; i.e., input operands aren’t required to be held after output operand is modified.

c – “controlled”
 • First operand is a “control” input; operation is only performed if it is a 1.

Un – “undo”
 • Operation does the time-reversal of the operation without the “Un” prefix.
Operations Encountered So Far

• Ordinary irreversible operations:
 - CLR(a): \(a := 0 \). Clear operation.
 - Invert(a, b): \(b := a \). Inverter operation.
 - AND(a, b, c): \(c := ab \). AND gate operation.
 - OR(a, b, c): \(c := a+b \). OR gate operation.
 - XOR(a, b, c): \(c := a \oplus b \). XOR gate operation.

• Unconditionally reversible operations:
 - NOT(a): \(a := a \). In-place NOT operation.
 - cNOT(a, b): \(b := a \oplus b \). Controlled-NOT operation.
 - ccNOT(a, b, c): \(c := ab \oplus c \). Toffoli gate operation.
 - SWAP(a, b): \(a \leftrightarrow b \). Swap operation.
 - cSWAP(a, b): if a, \(a \leftrightarrow b \). Fredkin gate operation.

• Conditionally reversible operations:
 - rCLR(a): \((a) \ a := 0\). Reversible clear operation.
 - rcSET(a, b): \((a + b) \) if \(a, b := 1 \). Controlled rSET operation.
 - rCOPY(a, b): \((b) \ b := a \). Reversible copy operation.
Type 2: Input-Barrier, Clocked-Bias
Reversible Retractile Logic

• Cycle of operation:
 – (1) Inputs raise or lower barriers
 • Do logic w. series/parallel barriers
 – (2) Clock applies bias force, which changes state, or not

Examples:
Hall’s logic,
SCRL gates,
Rod logic interlocks

• Barrier signal is amplified!
 Gain, restoring logic, fan-out.
• Must reset output prior to changing input.
• Combinational logic only!
Type 2 example: Adiabatic CMOS “buffer” (really, a \texttt{cSET/cCLR} gate)

- Controlled-SET / controlled-CLEAR.
 - Using dual-rail signaling, we can reversibly set or clear a bit on an unoccupied logic node (pair of voltage nodes),
 - conditionally on an input node.
- Structure: Two CMOS transmission gates
 - 2 transistors each;
 - 4T total

- Features:
 - Amplifies input signal.
 - Fully restores logic levels.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{adiabatic_cmos_buffer_diagram}
\caption{Diagram of a Type 2 Adiabatic CMOS buffer}
\end{figure}

\begin{itemize}
\item [Voltage color scheme:] Low / High
\item [Drive] \texttt{N} on
\item [In] \texttt{N} \quad \texttt{P} \\
\item [Out] \texttt{N}
\end{itemize}

(And similarly for \texttt{Out\textsubscript{P}})
Transition Table for \textbf{cSET}

- It is not \textit{always reversible},
 - Not a one-to-one transformation of all possible local states,
- But, it is \textit{conditionally reversible}
 - \textit{I.e.}, on condition that input state 1,1 is avoided.
- Transition table for \textbf{cCLR} is similar.

<table>
<thead>
<tr>
<th>Before cSET</th>
<th>After cSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Destination</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Transition from 1,1 is not allowed.
Icon for \texttt{cSET/cCLR} gate

- Represents a gate that can perform either \texttt{cSET} or \texttt{cCLR} on the \textit{Out} node, with either operation conditioned on In_{NP} being a logic 1.

- Constraints on use (in simple CMOS impl.):
 - Input must be a dual-rail pair.
 - The \textit{Drive} control signal must have the same bus width as the \textit{Out} signal.
Spacetime diagram for buffer

- Subscript \(NP \) notation denotes shorthand for dual-rail NP pair of wires.
 - Still denotes a single *logical* bit.
- Diagram emphasizes that the buffer copies \(In_{NP} \)’s value to a *new* location.
 - The value simultaneously remains available in the old location.
- Dotted horizontal line shows that \(Out_{NP} \) is empty prior to the operation.
 - The absence of “\(\times \)” icon shows that the operation is reversible.
- Buffer icon indicates that the input signal is being amplified and restored.
 - Note that the input comes from \(In_{NP} \), *not* from previous value of \(Out_{NP} \).
- Downward wedges remind us the output remains dependent on the input.
 - Input can’t be changed without (possibly) irreversibly destroying output.
- Fortunately, the buffer’s entire operation sequence is reversible!
 - So, sometime later on, we can *unbuffer* the output,
 - and then we are free to change the input.
Reversible Buffered Latch

- Uses two dual-rail T-gates.
- Combines a buffer and latch.
 - Reversibly copies In_{NP} to Mem_{NP} when operated.

Physical structure:

This is our icon for a CMOS transmission gate (T-gate). It says that nodes A and B are connected whenever the control signal C_{NP} has logic value 1.

Spacetime diagram for operation sequence:

Implements “reversible copy”:
Hardware Icon for Buffered Latch

- Looks a little bit like a diode icon, but isn’t.
- Composed of our previous icons for:
 - Reversible buffer
 - Reversible latch

This gate properly implements the $\text{rlcSET}(in, out)$ and $\text{rlcCLR}(in, out)$ operations!
 - The buffer alone does not quite do it, because of the constraint that in must be stable while out is driven.
Three Ways to Use a Transmission Gate Reversibly

• **rSET/rCLR** – Drive signal and gate signals are both considered to be control.
 – Unconditional, not data-dependent.

• **rLatch/rUnlatch** – Drive signal is a data input, gate signals are control.
 – \(rLatch(in, out) \) just isolates \(in \) from \(out \)

• **cSET/cCLR** – Drive signal is a control signal, gate signals comprise data input.
 – \(cSET(in, out) \) presents a copy of \(in \) on \(out \)

• What if everything is a data input?
 – Some data transitions are reversible, others not
Reversible & Irreversible T-gate Transitions

• When drive and gate are both data-dependent
 – Certain data transitions must be avoided...
Type 2 example: SCRL inverter (w/o latch)

- Same structure as static CMOS inverter, but used reversibly.
- Produces a fully-restored, amplified output signal.
- Inverters can be cascaded, but need latches to get feedback.

SCRL = “Split-level Charge Recovery Logic” (Younis & Knight, 1993)

Voltage color scheme:
Low / Medium / High
SCRL Inverter Transition Table

<table>
<thead>
<tr>
<th>Before SCRL-Inv</th>
<th>After SCRL-Inv</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>½</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>½</td>
<td>0</td>
</tr>
<tr>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>½</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>½</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Conditionally reversible, if input is valid and output is \(\frac{1}{2} \) just before drivers do their thing.

- No point in even listing the table entries that don’t occur; can summarize operation below.

Summary Table

<table>
<thead>
<tr>
<th>Before SCRL-Inv</th>
<th>After SCRL-Inv</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>0</td>
<td>½</td>
</tr>
<tr>
<td>1</td>
<td>½</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

3/16/2012
Spacetime Diagram for SCRL Inverter

- Note that the notation shows that Out is being computed from In on a separate wire.
 - In is explicitly not being inverted “in place.”
- Wedge symbols show ongoing dependence.
 - Of course, we can always undo the op later.
Icon for SCRL Inverter

- **Same as normal inverter icon**
 - Can (optionally) also show control (drive) bus.

- **Note we can build a latched SCRL inverter very easily:**

Internal node (might not be labeled)
rsCopyInv(In,Out)

Reversible Split-level Copy with Inversion

- **Preconditions:**
 - \(Out\) is initially clear (logic N - neutral).

- **Semantics:**
 - \(Out := \neg In\)

- **Gate icon in hardware diagrams:**
 - (same gate also performs \(rUnCopyInv\).)
Simple Logic Example: Adiabatic NMOS OR gate

- Input barriers along two parallel paths

\[\text{Out} = A \lor B \]

- Reverse sequence decomputes \text{Out}.
 - Can’t change \(A,B \) freely until then.
- With NMOS, \text{Out} is weak (orange).
- Can use an SCRL inverter to restore the signal levels.
 - If appropriately biased…
 - Or, just use CMOS transmission gates instead (8T OR)
Type 3: Input-Barrier, Clocked-Bias Latching Logic

- **Cycle of operation:**
 1. **Input conditionally lowers barrier**
 - Do logic w. series/parallel barriers
 2. Clock applies bias force; conditional bit flip
 3. Input removed, *raising* the barrier & locking in the state-change
 4. Clock bias can retract

Examples: Mike’s 4-cycle 2-level adiabatic CMOS logic (2LAL)
2LAL: 2-level Adiabatic Logic

A pipelined fully-adiabatic logic invented at UF (Spring 2000), implementable using ordinary CMOS transistors.

- **Use simplified T-gate symbol:**
- **Basic buffer element:**
 - cross-coupled T-gates:
 - need 8 transistors to buffer 1 dual-rail signal
- **Only 4 timing signals \(\phi_{0-3} \) are needed. Only 4 ticks per cycle:**
 - \(\phi_i \) rises during ticks \(t \equiv i \) (mod 4)
 - \(\phi_i \) falls during ticks \(t \equiv i+2 \) (mod 4)
2LAL Cycle of Operation

Tick #0
- in \rightarrow 1
- \phi_0 \rightarrow 1
- in = 0
- out = 0

Tick #1
- in \rightarrow 0
- \phi_1 \rightarrow 1
- out \rightarrow 1
- out = 0

Tick #2
- in \rightarrow 0
- \phi_0 \rightarrow 0
- out \rightarrow 0

Tick #3
- \phi_1 \rightarrow 0
A Schematic Notation for 2LAL

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
2LAL Shift Register Structure

- **1-tick delay per logic stage:**

- **Logic pulse timing and signal propagation:**

![Diagram of 2LAL Shift Register Structure](2ials wf)
More Complex Logic Functions

• Non-inverting multi-input Boolean functions:

 - One way to do inverting functions in pipelined logic is to use a quad-rail logic encoding:
 - To invert, just swap the rails!
 - Zero-transistor "inverters."

\[A = 0 \]
\[A_N \]
\[A_P \]
\[\bar{A}_N \]
\[\bar{A}_P \]

\[A = 1 \]
\[A_N \]
\[A_P \]
\[\bar{A}_N \]
\[\bar{A}_P \]
cNOT hardware diagram

• Here is an implementation of in-place cNOT(a,b) (controlled-NOT)
 – In terms of reversible AND or OR, reversible buffers, reversible latches, and (0T dual-rail) complement bubbles.

• As you can see, it is rather complicated!
 – Illustrates that cNOT might not be a very good primitive for reversible CMOS!

• This structure can be properly called a cNOT gate (as opposed to a cNOT operation)
cNOT operation sequence

Steps to implement \(c\text{NOT}(a,b)\):

1. \(r\text{IXOR}(a,b,x)\):
 1a. \(r\text{UnLatch}(i,x)\)
 1a. \(r\text{AND}(a,b,i), r\text{AND}(a,b,i)\)
 1b. \(r\text{Latch}(i,x)\)
 1c. \(r\text{UnAND}(a,b,i), r\text{UnAND}(a,b,i)\)

2. \(r\text{AND}(a,x,b), r\text{UnAND}(a,x,b)\)

3. \(r\text{UnCopy}(b,x)\):
 3a. \(r\text{cSET}(b,j)\)
 3b. \(r\text{UnLatch}(j,x)\)
 3c. \(r\text{cUnSet}(b,j)\)
 3d. \(r\text{Latch}(j,x)\)

Note it takes 9 full steps!
Graph shows power dissipation vs. frequency
- in 8-stage shift register.

At moderate frequencies (1 MHz),
- Reversible uses < 1/100th the power of irreversible!

At ultra-low power (1 pW/transistor)
- Reversible is 100× faster than irreversible!

Minimum energy dissip. per nFET is < 1 eV!
- 500× lower than best irreversible!
 - 500× higher computational energy efficiency!

Energy transferred is still ~10 fJ (~100 keV)
- So, energy recovery efficiency is 99.999%!
 - Not including losses in power supply, though.
With this recursive structure, we can do a 2^n-bit add in $2(n+1)$ logic levels. Hardware overhead is $< 2 \times$ regular ripple-carry!
32-bit Adder Simulation Results

Further improvements may be attainable through more pipelining, carry-save adders, etc.

32-bit adder power vs. frequency

32-bit adder energy vs. frequency

(Results are normalized to a throughput level of 1 add/cycle)
Reversible and/or Adiabatic Full-Custom VLSI Chips Designed @ MIT, 1996-1999

By EECS grad students Josie Ammer, Mike Frank, Nicole Love, Scott Rixner, and Carlin Vieri under CS/AI lab members Tom Knight and Norm Margolus.
Things to Do

- Explore whether this more-general paradigm for conditionally-reversible logic primitives might be helpful in developing reversible designs in technologies other than CMOS.
 - In particular, superconducting technologies.
 - May facilitate porting designs between domains.

- Build up a much more comprehensive variety of larger functional-unit designs based on this general approach.
 - And teach more designers how to work with it!