The dot product of vectors is an important tool. It makes it possible to find the length of a vector, by multiplying the vector by itself and taking the square root. It is also used to check if two vectors are orthogonal: if their dot product is zero, they are. In this subsection, the dot product is defined for complex vectors and functions.
The usual dot product of two vectors
and
can be
found by multiplying components with the same index
together and
summing that:
Note the use of numeric subscripts,
,
,
rather than
,
,
;
The length of a vector
,
or
simply by
,
Therefore, it is necessary to use a generalized “inner product” for complex vectors, which puts a complex
conjugate on the first vector:
![]() |
(2.7) |
The length of a nonzero vector is now always a positive number:
![]() |
(2.8) |
Physicists take the inner product “bracket” verbally
apart as
The inner product of functions is defined in exactly the same way as for
vectors, by multiplying values at the same
-
values, the sum
becomes an integral:
![]() |
(2.9) |
The equivalent of the length of a vector is in the case of a function
called its “norm:”
![]() |
(2.10) |
A vector or function is called “normalized” if its length or norm is one:
| (2.11) |
Two vectors, or two functions,
and
,
| (2.12) |
Sets of vectors or functions that are all
So, a set of functions or vectors
is orthonormal if
Key Points
![]()
- For complex vectors and functions, the normal dot product becomes the inner product.
![]()
- To take an inner product of vectors,
- take complex conjugates of the components of the first vector;
- multiply corresponding components of the two vectors together;
- sum these products.
![]()
- To take an inner product of functions,
- take the complex conjugate of the first function;
- multiply the two functions;
- integrate the product function.
![]()
- To find the length of a vector, take the inner product of the vector with itself, and then a square root.
![]()
- To find the norm of a function, take the inner product of the function with itself, and then a square root.
![]()
- A pair of vectors, or a pair of functions, is orthogonal if their inner product is zero.
![]()
- A set of vectors forms an orthonormal set if every one is orthogonal to all the rest, and every one is of unit length.
![]()
- A set of functions forms an orthonormal set if every one is orthogonal to all the rest, and every one is of unit norm.